Skip to Content

1.4.4 Theta

Theta is the derivative of the option price with respect to time. It is generally quoted in how much the price will drop over one day, and provides a sense of the rate of decay of an options value as it approaches expiration.


Summary of Terms

VV = Contract Value

Θ\Theta = Contract Theta

SS = Spot Price

KK = Strike Price

σ\sigma = Implied Volatility

τ\tau = Years to Expiration

rr = Risk Free Rate

qq = dividend yield


Calculation

Θ=Vτ\Theta = \frac{\partial V}{\partial \tau} Θcalls=Sσeqτ8πτe12d+2rKerτ12[1+erf(d2)]+qSeqτ12[1+erf(d+2)]\Theta_{calls} = -{S\sigma e^{-q\tau} \over \sqrt{8\pi\tau}}e^{-{1 \over 2}d_+^2} - rKe^{-r\tau}{1 \over 2}\bigg[1 + erf\bigg({d_- \over \sqrt2}\bigg)\bigg] + qSe^{-q\tau}{1 \over 2}\bigg[1 + erf\bigg({d_+ \over \sqrt2}\bigg)\bigg] Θputs=Sσeqτ8πτe12d+2+rKerτ12[1+erf(d2)]qSeqτ12[1+erf(d+2)]\Theta_{puts} = -{S\sigma e^{-q\tau} \over \sqrt{8\pi\tau}}e^{-{1 \over 2}d_+^2} + rKe^{-r\tau}{1 \over 2}\bigg[1 + erf\bigg({d_- \over \sqrt2}\bigg)\bigg] - qSe^{-q\tau}{1 \over 2}\bigg[1 + erf\bigg({d_+ \over \sqrt2}\bigg)\bigg] d+=1στ[ln(SK)+(r+σ22)τ]d_+ = {1 \over \sigma \sqrt{\tau}}\bigg[\ln\bigg({S \over K}\bigg) + \bigg(r + {\sigma^2 \over 2}\bigg)\tau\bigg] d=d+στd_- = d_+ - \sigma\sqrt{\tau}

Interactive Chart

[coming soon…]